DOCUMENT RESUME

ED 397 061 TM 022 372

AUTHOR Bizot, Elizabeth B.; Goldman, Steven H.

TITLE The Practical Impact of IRT Models and Parameters

When Converting a Test to Adaptive Format.

PUB DATE Apr 94

NOTE 18p.; Paper presented at the Annual Meeting of the

American Educational Research Association (New

Orleans, LA, April 4-8, 1994).

PUB TYPE Reports - Research/Technical (143) --

Speeches/Conference Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.

DESCRIPTORS Ability; *Adaptive Testing; *Computer Assisted

Testing; *Estimation (Mathematics); High Schools; *High School Students; *Item Response Theory; Models;

Selection; *Test Format; Vocabulary

IDENTIFIERS Calibration; Data Conversion; *Three Parameter Model;

Two Parameter Model

ABSTRACT

A study was conducted to evaluate the effects of choice of item response theory (IRT) model, parameter calibration group, starting ability estimate, and stopping criterion on the conversion of an 80-item vocabulary test to computer adaptive format. Three parameter calibration groups were tested: (1) a group of 1,000 high school seniors, (2) a group of 1,000 high school freshmen, and (3) 300 of this second group retested as seniors. Two methods for setting the initial ability estimate, a random-based estimate and an ability-based estimate, were explored using two-parameter-logistic, three-parameter logistic with "c" parameter fixed at 0.2 (2.5 parameter), and full three-parameter logistic models. Alternatives were tested against a database of 2,697 people (including the calibration group) who had taken the full 80-item test. Results indicate that adaptive testing scores are relatively robust to differences in IRT models and parameters. The full three-parameter model was the best theoretical match to the test and gave the best practical results, but the 2.5 parameter model results were not much different. Five tables present analysis results. (Contains 3 references.) (SLD)

^{*} Reproductions supplied by EDRS are the best that can be made from the original document.

^{**************************}

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement
EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

- (1) This document has been reproduced as received from the person or organization originating it
- Minor changes have been made to improve reproduction quality
- Points of view or opinions stated in this document do not necessarily represent official OERI position or policy

"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

The Practical Impact of IRT Models and Parameters When Converting a Test to Adaptive Format

by

Elizabeth B. Bizot

Steven H. Goldman

Ball Foundation 800 Roosevelt Road Suite C-120 Glen Ellyn, IL 60137

BEST COPY AVAILABLE

April, 1994

Paper Presented at the Annual Meeting of the American Educational Research Association, New Orleans, LA

Item Response Theory (IRT) provides the theoretical underpinning for converting a test from standard linear format to computer adaptive, but there are still questions about the implications of choices in some components of the testing process (Hambleton, Zaal, & Pieters, 1991). This study was conducted to evaluate the effects of choice of IRT model, parameter calibration group, starting ability estimate, and stopping criterion on the conversion of an 80-item vocabulary test to computer adaptive format.

Alternatives Evaluated.

IRT Parameter Calibration Groups/Models

Item parameters are independent of the examinees used to estimate them as long as the parameter calibration group represents the full range of ability. We wanted to see the practical effect of a non-representative calibration group. Three groups were studied: L1, a group of 1000 high school seniors; L2, a group of 1000 high school freshmen (who scored much lower on the test than did L1); and L2 Retest (L2R), 300 of the original L2 group who were retested as high school seniors and who were in general higher achieving than L1.

Most adaptive testing applications use the three parameter model as the best theoretical fit to multiple choice data (Hambleton, Zaal, & Pieters, 1991), but there can

be difficulty in estimating the <u>c</u> parameter adequately (Hambleton, 1989) and so other models may actually perform better. Our intention was to estimate item parameters for each of the three groups using three models: 2 parameter logistic (2PL), 3-parameter logistic with <u>c</u> parameter fixed at .2 (2.5PL), and full 3-parameter logistic (3PL). However, BILOG was unable to calculate the 2.5PL model for the L2 freshman group, and so a total of eight model/group parameter estimates were evaluated. Tables 1, 2, and 3 display item parameters for each of the three groups for the three parameter model.

Insert Tables 1, 2, and 3 About Here

Initial Ability Estimate/Initial Item Selection

Hambleton, Zaal, and Pieters (1991) suggest that prior information on ability can improve testing efficiency by helping select a correct starting point, but that most researchers believe that starting with an item of moderate difficulty yields adequate test performance. We evaluated two methods for setting the initial ability estimate (from which items appropriate for that ability level would be chosen). For a moderate-difficulty start, we used a random ability estimate between -2 and +2, and for an ability-based estimate we used a formula based on years of previous education.

Stopping Criterion

Hambleton, Zaal, and Pieters (1991) report that most adaptive testing programs

stop testing based on the standard error, a preselected number of items, or some combination of both. This study investigated stopping at total test information equal to 7.5, 11.1, and 16 (equivalent to a standard-error based criterion because the standard error is a function of the test information), or when 25 items had been administered.

Method

Subjects

The alternatives were tested against a database of 2697 people who had taken the ful! 80-item test. The 2697 included people from the calibration samples (L1, L2 freshman, and L2 Retest), as well as career counseling clients and occupational research subjects. Only people who had responded to all 80 items were included; this selection eliminated some low-scoring individuals, but was necessary because responses to any item might be needed in simulating the adaptive test. Subjects were 51% female; the ethnic distribution was 14% African-American, 69% Caucasian, 15% Hispanic, and 2% other. Age ranges were 28% 13-15, 40% 16-18, 10% 19-25 and 22% 26 and over. Scores on the standard 80-item test ranged from 8 to 80 (M=41.61, SD=21.33).

Instrument

The test is an 80-item multiple choice vocabulary test which is part of the Ball Aptitude Battery (Ball Foundation, 1993). Although additional items are available, for purposes of this study, only the 80 items from Form A of the standard test were

included in the item pool. The test is sufficiently unidimensional for application of IRT; alpha reliability is .98, and factor analysis shows that the first factor accounts for 35% of the variance with no other large factors.

Procedure

A BASIC program was written to simulate adaptive administration of the test to each person in the database using the maximum-information method for selecting the next item to administer. Each person was "tested" 16 times: once for each starting estimate (random or education-based) for each of the eight item parameter groups. Ability estimates and number of items administered were recorded at each of the three information-based stopping points (if they were reached) and at the final 25 items for each administration. In addition, an estimate of the full 80-item score was computed by summing the probability of success on each item for a person of the given ability.

The results of each alternative for each decision were evaluated by examining the average number of items administered and the average absolute difference between the estimated and the actual 80-item score under each condition. In computing the averages, for cases where an information-based stopping criterion was not met, data for the 25-item administration for that person was used, as would happen during actual adaptive testing. Because alternatives might perform differently at different points on the ability scale, results were examined separately for four levels

Practical Impact of IRT Models
Page 6

based on scores on the original test: those scoring 0-20 (N = 529), 21-40 (N = 958), 41-60 (N = 512), and 61-80 (N = 698).

Results

IRT Model/Parameter Groups

As demonstrated in Table 4, average absolute difference scores ranged from 2.80 to 12.04, with most in the range of 3 - 6. Average number of items administered ranged from 7.2 to 25 (the latter implying that information-based stopping criteria were never met for that combination of alternatives).

Insert Table 4 About Here

As expected, the two parameter sets based on the L2 freshman group did not perform well, particularly in the upper ability ranges where the average difference scores were between 9 and 12. Even in the lower ability ranges these models tended to require more items administered.

The difference scores resulting from the L1 group (N = 1000) and the L2 Retest group (N = 300) were very similar, indicating that there was little practical effect of using the smaller and somewhat less diverse group to estimate the item parameters, even in the full three parameter model. Differences between the two groups in number of items administered varied across ability levels, but was never more than 2 items.

With both the L1 and L2 Retest parameters, the 2PL model required fewer items

at the low end but more items at the high end. On the other hand, the 2.5PL and 3PL models required more items at the low ability end (averaging around 22) but fewer at the high, especially in the 41-60 score range where 8 - 9 items were often sufficient.

Overall, taking into account both difference scores and the number of items administered, the full 3PL model based on the L1 group was most effective, but several of the other models also performed adequately.

Initial Ability Estimate

As seen in Table 5, using a random starting ability rather than an education-based starting point required, on average, about one additional item and never more than two. Thus, differences appear to be minimal between groups based on starting point used.

Insert Table 5 About Here

Stopping Criterion

The highest stopping criterion (total information = 16) was almost never met, resulting in administration of the full 25 items in almost all cases. Between the other two information-based stopping criteria (7.5 and 11.1), the more stringent criterion resulted in a lower average difference about one-half to one point, usually at a cost of administering about 5 to 7 additional items. In all cases, there is a smaller average difference when more items are administered.

Discussion

Overall, the results indicate that adaptive testing scores are relatively robust to the differences in IRT models and parameters. The similarities between results for the L1 (N=1000) and L2 Retest (N=300) groups demonstrate that although the item a, b, and c parameters were somewhat different in the two models, the practical impact on adaptive testing was minimal. The 3PL model, including guessing, is the best theoretical match to the test and also produces the best practical results, but results from the 2.5PL model are not much different, again indicating a practical robustness to theoretical differences.

Having prior information on which to base the starting ability estimate reduced the number of test items somewhat, and raising the total amount of information required before stopping the computer-administered test reduces the difference between the adaptive score and the full linear score, but again both differences are small in practical terms.

References

- Ball Foundation (1993). Ball Aptitude Battery Technical Manual. Glen Ellyn, II: Ball Foundation.
- Hambleton, R. K., Zaal, J. N., & Pieters, J. M. P. (1991). Computerized adaptive testing: Theory, applications, and standards. In R. K. Hambleton & J. N. Zaal (Eds.) Advances in educational and psychological testing: Theory and applications (pp. 341-366).
- Hambleton, R. K. (1989). Principles and selected applications of item response theory. In R. L. Linn (Ed.), <u>Educational Measurement</u>, <u>3rd Edition</u> (pp. 147-200).

Table 1

Item Parameter Estimates for the Three Parameter Model
For Group L1 (N = 1000)

ltem	Parameter A	Parameter R	Parameter C.	
01	1.239	-0.863	0.209	
02	0.873	-1.809	0.108	
03	1.013	-0.777	0.131	
04	1.714	-0.567	0.129	
05	1.173	-1.353	0.161	
06	0.874	-1.660	0.108	
07	1.329	0.159	0.126	
80	2.415	-0.221	0.195	
09	1.597	1.379	0.397	
10	1.141	-0.741	0.093	
11	0.909	-0.237	0.071	
12	ბ.991	-0.074	0.065	
13	0.973	-0.281	0.156	
14	1.032	-1.212	0.110	
15	1.397	0.169	0.082	
16	1.059	0.457	· 0.117	
17	0.644	0.150	0.131	
18	1.237	0.214	O.151	
19	0.528	-0.508	0.158	
20	1.065	0.549	0.109	
21	1.568	0.451	0.156	
22	1.446	0.250	0.246	
23	1.456	0.643	0.144	
24	1.703	0.521	0.134	
25	1.378	0.426	0.076	
26	0.819	-0.335	0.060	
27	0.929	0.195	0.075	
28	1.015	0.441	0.097	
29	1.432	0.359	0.135	
30	1.459	0.570	0.207	
31	0.700	0.980	0.213	
32	0.857	0.921	0.166	
33	0.793	0.642	0.049	
34	0.987	0.819	0.194	
35	0.657	0.069	0.149	
36	1.075	0.631	0.109	
37	0.592	-0.028	0.079	
38	0.724	0.351	0.162	
39	1.160	0.307	0.100	
40	1.459	1.622	0.166	
41	1.707	0.949	0.049	
42	0.956	-0.208	0.126	

Table 1 Cont.

item	Parameter A	Parameter B	Parameter C	
43	1.180	0.987	0.160	
44	1.700	1.126	0.075	
45	1.540	1.752	0.211	
46	1.359	0.926	0.12 ำ	
47	0.669	0.960	0.118	
48	1.861	1.340	0.132	
49	1.049	0.779	0.109	
50	1.800	1.299	0.317	
51	0.829	1.804	. 0.094	
52	1.536	1.201	0.171	
53	0.986	0.763	0.112	
54	0.941	1.805 .	0.169	
55	0.935	0.406	0.169	
56	1.434	1.314	0.112	
57	1.782	1.071	0.154	
58	0.958	1.550	0.178	
59	1.138	1.380	0.126	
60	1.005	0.990	0.047	
61	1.164	0.897	0.046	
62	1.041	1.294	· 0.060	
63	0.950	2 023	0.132 ,	
64	1.290	1.472	0.059	
65	1.250	2.008	0.249	
66	1.876	1.669	0.166	
67	1.343	1.290	0.145	
68	1.428	1.457	0.101	
69	1.241	1.676	0.094	
70	0.732	1.983	0.038	
71	1.345	1.463	0.191	
72	1.386	1.244	0.059	
73	1.309	1.758	0.071	
74	1.278	1.467	0.159	
75	1.012	1.911	0.107	
76	1.225	1.712	0.115	
77	1.355	1.921	0.132	
78	1.201	2.151	0.140	
79	0.368	3.842	0.139	
80	0.988	2.425	0.042	

Table 2

Item Parameter Estimates for the Three Parameter Model
For Group L2 (N = 1000)

<u>ltem</u>	Parameter A	<u>Parameter B</u>	Parameter C	
01	1.389	0.101	0.264	
02	1.016	-0.905	0.123	
03	0.914	-0.087	0.083	
04	1.447	0.044	0.198	
05	1.096	-0.433	0.159	
06	0.842	-0.981	`0.120	
07	1.085	0.890	0.065	
08	1.636	0.783	0.169	
09	0.415	1.642	0.246	
10	1.247	0.577	0.187	
11	0.928	1.138	0.103	
12	0.910	0.587	0.085	
13	0.913	0.551	0.134	
14	1.141	-0.164	0.105	
15	1.574	1.338	0.090	
16	1.093	1.536	0.190	
17	0.955	1.250	0.239	
18	1.949	1.363	. 0.226	
19	0.523	0.401	0.149	
20	1.172	1.560	0.105	
21	1.648	1.100	0.125	
22	1.785	1.692	0.256	
23	1.833	1.649	0.1⊍9	
24	2.034	1.414	0.111	
25	1.889	1.167	0.069	
26	0.723	0.441	0.067	
27	0.972	1.633	0.125	
28	1.118	1.514	0.120	
29	1.221	1.555	0.087	
30	0.799	1.174	0.145	
31	0.507	1.476	0.116	
32	0.912	2.438	0.177	
33	0.701	1.346	0.087	
34	1.068	1.681	0.161	
35	0.682	1.075	0.148	
36	1.816	1.709	0.174	
37	0.508	0.677	0.114	
38	0.821	1.525	0.251	
39	1.502	0.777	0.141	
40	1.723	2.502	0 194	
41	2.168	1.807	0.083	
42	0.822	0.901	0.154	

Table 2 cont.

ltem	Parameter A	Parameter B	Parameter C	
43	1.747	1.733	0.200	
44	1.999	2.279	0.063	
45	1.548	2.115	0.125	
46	2.054	2.006	0.158	
47	0.873	2.240	0.159	
48	1.859	2.343	0.153	
49	0.929	1.929	0.182	
50	0.712	2.302	0.283	
51	0.535	3.164	0.090	
52	1.384	2.070	0.102	
53	1.184	1.782	0.160	
54	1.141	3.018	0.185	
55	0.761	1.095,	0.157	
56	1.438	2.269	0.112	
57	1.415	1.988	0.108	
58	1.618	2.075	0.174	
59	1.267	2.162	0.157	
60	1.235	2.194	0.079	
61	1.248	1.868	0.062	
62	1.236	2.556	0.101	
63	2.759	2.241	0.200	
64	1.431	2.711	0.081	
65	0.794	3.489	0.186	
66	1.316	3.085	0.179	
67	1.261	2.876	0.158	
68	1.321	2.023	0.107	
69	0.998	2.038	0.081	
70	1.252	2.499	0.097	
71	2.099	2.327	0.193	
72	1.413	2.546	0.062	
73	1.562	2.732	0.101	
74	0.891	2.422	0.142	
75	0.959	2.512	· 0.109	
76	1.019	2.386	0.100	
77	1.262	3.242	0.132	
78	0.815	3.218	0.116	
79	0.699	2.868	0.153	
80	2.144	2.921	0.071	

ltem	Parameter A	Parameter B	Parameter C
01	1.416	-1.208	. 0.137
02	0. 79 3	-2.373	0.148
03	1.144	-1.068	0.198
04	1.034	-1.245	0.133
05	1.490	-1.356	0.158
06	1.152	-1.756	`0.178
07	1.376	-0.060	0.152
08	2.046	-0.394	0.135
09	1.116	0.758	0.281
10	1.386	-0.811	0.220
11	0.621	-0.665	0.130
12	0.782	-0.258	0.157
13	1.059	-0.275	0.288
14	1.091	-0.910	0.147
15	1.714	0.425	0.166
16	1.091	0.318	· 0.136
17	0.437	-0.314	0.176
18	1.019	-0.090	. 0.095 ´
19	0.423	-1.058	0.179
20	1.123	0.170	0.163
21	1.264	0.164	0.107
22	1.952	0.075	0.153
23	1.553	0.456	0.112
24	1.507	0.497	0 117
25	1.389	0.425	0.104
26	0.492	-0.832	0.132
27	1.032	0.264	0.107
28	0.951	-0.042	0.119
29	1.066	0.594	0.157
30	1.195	0.357	0.220
31	0.460	0.884	0.229
32	0.750	1.255	0.213
33	0.9 9 3	0.847	0.113
34	1.021	0.271	0.172
35	0.502	-0.328	0.134
36	0.864	0.769	0.143
37	0.521	-0.381	0.175
38	0.602	0.379	0.185
39	2.263	-0.288	0.176
40	0.617	1.485	0.206
41	1.358	1.082	0.055
42	0.771	-0.671	0.183

Table 3 Cont.

ltem	Parameter A	Parameter B	Parameter C	
43	1.295	0.616	0.182	
44	1.287	1.198	0.062	
45	1.407	1.680	0.161	
46	1.082	0.914	0.093	
47	0.731	1.209	0.157	
48	1.550	1.037	0.116	
49	0.628	-0.304	0.137	
50	1.319	1.299	0.334	
51	0.985	2.000	0.168	
52	0.800	1.258	0.107	
53	0.896	0.398	0.108	
54	1.310	1.944	0.168	
55	. 0.677	0.025	0.202	
56	1.132	0.969	0.076	
57	1.213	1.038	0.108	
58	0.648	0.951	0.144	
59	0.896	1.409	0.152	
60	0.898	0.771	0.059	
61	1.517	0.857	0.103	
62	1.080	1.093	[,] 0.101	
63	1.309	1.635	0.129	
64	1.483	1.092	0.092	
65	1.392	1.777	0.292	
66	1.784	1.626	0.147	
67	0.941	1.415	0.140	
68	1.223	1.732	0.112	
69	1.006	1.490	0.094	
70	1.188	1.803	0.080	
71	1.337	0.862	0.206	
72	1.073	1.463	0.071	
73	1.355	1.961	0.125	
74	1.352	1.443	0.201	
75	1.279	1.545	0.151	
76 	1.520	1.595	0.118	
77	0.700	2.672	0.150	
78	0.707	2.165	0.165	
79	0.973	2.724	0.221	
80	1.208	1.497	0.046	

Average Absolute Difference and Average Items Administered by Group and Vocabulary Score with Educational Level Starting Ability

VO SCORE		1 (0)-20)	2 (21-40)		3 (41-60)		4 (61-80)	
CUTOFF		Α	В	Α	В	Α	В	Α	В
	MDIFF	4.17	3.57	4.67	3.81	5.03	3.88	2.89	2.85
L1/2	MITEM	9.90	17.30	8.40	14.60	17.40	23.40	24.90	25.00
	MDIFF	4.09	3.71	4.37	3.70	7.10	6.38	4.21	3.53
L1/2.5	MITEM	23.90	24.80	10.70	16.90	7.20	9.70	12.30	14.40
	MDIFF	3.07	2.70	4.96	4.13	6.32	5.80	3.41	2.95
L1/3	MITEM	21.40	24.40	9.80	15.90	8.00	11.40	15.70	18.80
	MDIFF	2.93	2.79	3.35	3.20	.4.30	4.30	11 96	11.96
L2/2	MITEM	21.60	25.00	22.10	25.00	25.00	25.00	25.00	25.00
	MDIFF	2.60	2.39	4.48	3.95	6.83	5.86	9.76	6.86
L2/3	MITEM	22.90	24.80	11.40	17.00	9.10	11.2	14.60	17.00
	MDIFF	4.21	3.56	4.74	3.90	4.03	3.31	2.80	2.80
L2R/2	MITEM	9.20	15.90	8.10	14.00	18.20	24.10	24.90	25.00
	MDIFF	4.70	4.15	5.33	4.55	5.79	5.13	4.23	3.29
L2R/2.5	MITEM	23.40	24.90	11.10	17.80	7.90	11.30	14.10	16.40
	MDIFF	3.54	2.80	5.26	4.29	5.99	5.06	3.15	2.90
L2R/3	MITEM	22.30	24.70	9.90	16.40	8.80	12.80	16.70	19.70

Note. MDIFF = Mean absolute difference scores MITEM = Mean of items administered A = 7.5 stopping criterion total B = 11.1 stopping criterion total VO SCORE = Vocabulary score range LR/2 = Group L2R at 2 parameter model

L1/2 = Group L1 at 2 parameter model L1/2.5 = Group L1 at 2.5 parameter model L1/3 = Group L1 at 3 parameter model L2/2 = Group L2 at 2 parameter model L2/3 = Group L2 at 3 parameter model L2R/2.5 = Group L2R at 2.5 parameter model L2R/3 = Group L2R at 3 parameter model

Table 5

<u>Average Absolute Difference and Average Items Administered by Group and Vocabulary Score with Random Starting Ability</u>

VO SCORE		1 (0	-20)	2 (21-40)		3 (41-60)		1 (61-80)	
CUTOFF		Α	В	Α	В	Α	В	Α	В
	MDIFF	4.18	3.65	4.57	3.80	4.83	3.88	2.92	2.88
L1/2	MITEM	10.90	17.80	9.30	15.10	17.90	23.60	24.90	25.00
	MDIFF	4.43	3.97	5.88	4.70	7.34	7.02	4.30	3.33
L1/2.5	MITEM	23.10	24.70	12.40	18.10	7.90	10.30	12.60	14.70
	MDIFF	3.32	2.95	5.50	4.58	6.42	5.80	3.43	2.88
L1/3	MITEM	22.10	24.60	10.90	16.70	8.60	12.00	16.10	19.20
	MDIFF	2.94	2.77	3.35	3.20	<u>,</u> 4.35	4.35	12.04	12.04
L2/2	MITEM	21.60	25.00	22.20	25.00	24.99	25.00	25.00	25.00
	MDIFF	3.15	2.86	5.03	4.40	7.04	5.91	9.40	6.75
L2/3	MITEM	22.90	24.70	11.90	17.30	8.90	11.13	15.10	17.40
	MDIFF	4.45	3.64	4.74	3.92	4.04	3.36	2.88	2.88
L2R/2	MITEM	10.20	16.50	8.90	14.60	18.60	24.20	24.90	25.00
L2R/2.5	MDIFF	4.56	4.18	5.87	5.04	6.92	6.34	4.11	3.35
	MITEM	23.80	24.90	12.80	18.90	9.20	12.60	14.60	16.90
	MDIFF	3.68	2.88	5.59	4.63	6.61	5.47	3.31	2.91
L2R/3	MITEM	22.80	24.70	11.30	17.30	9.90	13.90	17.70	20.10

Note. MDIFF = Mean absolute difference scores

MITEM = Mean of items administered

A = 7.5 stopping criterion total B = 11.1 stopping criterion total

VO SCORE = Vocabulary score range

L1/2 = Group L1 at 2 parameter model

L1/2 = Group L1 at 2 parameter model

L1/2.5 = Group L1 at 2.5 parameter model

L1/3 = Group L1 at 3 parameter model

L2/2 = Group L2 at 2 parameter model

Le/2 - Group L2 at 2 parameter moder

L2/3 = Group L2 at 3 parameter model

L2R/2.5 = Group L2R at 2.5 parameter model

L2R/3 = Group L2R at 3 parameter model